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THE INIIA_ FINITE ELE IIT THOD

by

Il-Bahng Park1

and

2
Walter D. Pilkey , M. ASC

INTRODUCTION

In this paper, the minimax method is applied to boundary value problems
which arise in structural mechanics. This is a weighted residual iethod in
which the maximum absolute value of a residual is minimized. Like other
weighted residual methods (7, 13), a trial function is employed which cor-
sists of undetermined parameters and basis functions. This trial function
is introduced into governing differential equations, and the maximum absolute
residual among several residuals at discrete points in the domain is minimized.
This residual minimization criterion is applied to a finite element formula-
tion by using piecewise trial functions defined on each element.

Computational implementation is achieved using linear programming. This
approach has been used in the global sense to obtain solutions for differen-
tial equations (3, 13, 21, 28).

Since the linear programming technique can be applied to solve over-
determined systems of equations (24), more mesh points than the number of
unknown parameters can be used to improve the solution. This is in contrast
to the collocation method. Also, equality constraints representing the
boundary conditions and inter-element continuity conditions can be included
in the formulation. This feature provides more freedom in choosing a trial
function, which is often the most important step in the weighted residual method.

iSenior Engineer, Nuclear Technology Division, Westinghouse Electric Corp.,
Pittsburgh, PA; formerly, Research Assoc., Civil Engineering Department,
University of Virainia.

2Professor, Applied Mechanics Division, University of Virginia,

Charlottesville, VA, 22901
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In the collocation method, the roots of the orthogonal polynomial
are frequently used as collocation points with considerable success (16,
23,26,27). This is referred to as the orthogonal collocation method. Convergence

studies (8,10,12,20) of the orthogonal collocation method show that in most
cases a convergence rate similar to that for the Galerkin and Ritz methods
can be obtained. This procedure will be utilized here in choosing optimal
locations for mesh points.

Since inequality constraints are acceptable in a linear programming
problem, the minimax method can be used for limit analyses and can analyse
structures with off-set supports, which pose a contact problem. When multiple
optimal feasible solutions arise for these types of problems, a parametric
programming method described in Appendix I can be used to choose a specific
optimal solution.

Soon after the upper bound theorem and the lower bound theorem in
plasticity became available (19) and the linear programming technique was
developed by Dantzig, limit analysis was identified as a linear programming
proble; and linear programming algorithms have been used for limit analysis
solutions since then (1,4,5,10,15,17,29,30).

This method appears to be easy to formulate and simple to use. Like
the collocation method, the proposed method does not involve the integra-
tion that is necessary with the other weighted residual methods.

FOR4ULATION

Elasto-Static Analyses.- For a given governing differential operator
equation of motion

Au = f (I)

we seek an approximate solution u whose image under differential operator
A approximates the given function f. Let

I
U(x) = X a. ,. (x) (2)

i=l 2. -

in which x is a vector of space variables, i(x) is a trial function, a.
are unm.own parameters, and .(x) are bases of the trial function. Introduce
Eq. (2) into Eq. (1). The residual R(x) becomes

R(x) Au(x) - f(x) = a. [A~i(x)] - f(x) (3) L P44
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In the proposed method, the criterion to determine the unknown para-
meters a. is to minimize the maximum absolute residual among several
residualsi at discrete points. Let

r = max!R(x.) I  j = 1,2,.... J (4)

in which x are the locations of mesh points. Then, a linear programming
problem caA be established (24). Find the parameters a. such that Z = r
is minimized and the constraints 1

R(x.) - r < 0
j = 1,2,.... (5)

-R(x.) - r < 0-3 -

are satisfied.

If the trial function does not satisfy some of the boundary conditions,
the following equality constraints can be included in the above formulation
(Eq. 5).

Bu(x ) b(x ) p = 1,2 ...... P (6)
-p -P

in which B is a boundary differential expression, b(x) is a given function
defined on the boundary, and x are the locations of boundary mesh points.

-p

When the finite element method is used, intereleoent continuity
conditions should be satisfied. That is, if p is the number of the highest
order appearing in the governing differential equation, the approximate
function and up, to (p-1) derivatives must be continuous across interelement
boundaries (31.). In the minimax method, these conditions can be placed
as constraints in the linear programming formulation. However, the hiah
order inter-element continuity requirement tends to increase the problem
size by increasing the number of nodal variables or by usinn additional
constraint equations. This constitutes a drawback of the proposed mini-
max method compared to conventional finite element methods.

If the number of constraints is greater than or equal to the number
of unknown parameters, the existence and uniqueness of a polynomial of
best approximation is guaranteed (9, 22).

Limit Analysis.- According to the lower bound theorem in plasticity,
if an equilibrium distribution of stress can be found which balances the
applied load and is everywhere below yield or at yield, the structure
will not collapse or will be just at the point of collapse (19).

To apply the previously formulated minimax method to limit analysis
by using the lower bound theorem, the trial function should satisfy the
equilibrium equations in the domain and boundary conditions on the boundary. The
pattern of load distribution is known. However, the magnitude of the load
factor A is unknown and is treated as an unknown variable together with
unknown coefficients of a trial function. The yield condition is introduced
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at some check points as inequality constraints. The minimization of the
maximum residual produces only an equilibrium state for any value of X.
In other words, for any A which does not violate the yield condition, the
values of unknown coefficients can be determined for the resulting stress
distribution to balance the applied load, X, accordingly. This means that
the linear programming problem has multiple solutions unless
there is another constraint that can specify X. Our purpose is to obtain
a solution that has the maximum value for X among these multiple solutions.
Therefore, we have to minimize the maximum residual and, at the same time,
maximize X. Then, the linear programming becomes: find the a. such that
Z = r is minimized, \ is maximized, and the constraints 1

R(x.) - r < 0
-Jj = 1,2,. . J

-R(x.) - r < 0 (7)

Bu(x ) b(x ) p = 1,2,. . P-p -p

Y(x n ) < k n = 1,2,. N .

are satisfied. Here Y(xn) is the value of the yield function evaluated
at x= x

This problem of multiple objective functions can be hndled as a linear
programming problem using the parametric programr.ing method described in Appendix
I. The technique in Appendix I of obtaining a solution with a maximum N is to
use a new objective function Z = r - cX, where E is a small positive number.
The solution gives a lower bound to the limit load.

NIUMERICAL E=AMPLES AND RESULTS

Beam on Elastic Foundation.- Consider a beam on an elastic foundation
subject to a uniform load as shown in Fig. 1.

The governing differential equation for engineering beam theory is

Ey iv + kysY= q (3)

in which E is Young's modulus of elasticity, I is the moment of inertia
of the beam cross section, ks is the stiffness of the elastic foundation,
and q is the uniform load intensity.

First, an ordinary polynomial is used as a trial function.

I xi-i()= .a. x (9)
i=l

Then,

iv
R(x) EIy (x) + k Y(x) - q (10)

Let one element apply for the entire beam. Use an equidistant spacing
mesh for the numerical calculations. The results shown in Table 1 are
quite accurate.
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An exception occurs for the beam of length L = 2 with a 10th order
polynomial. In the use of a very high order polynomial, the differences
between magnitudes of the coefficients in the constraint equations become
very big and significant numerical error results. This is a drawback in
using an ordinary polynomial. However, this difficulty can be overcome by
refining elements. An advantage of using an ordinary polynomial is that
there is no need for matrix inversion to transform the coefficients of the
polynomial to nodal variables as is encountered in the usual finite element
formulations (31).

n Next use Hermitian shape functions as bases of the trial function. Let
H.. () denote the nth order Hermitian shape function which is the (2n+l)th
or er polynomial (31). In this polynomial, n is the number of d~rivatives
that the set can interpolate, i is the order of derivatives of H.. () with
respect to2  , and j =31 or 2 are the element node numbers. In t numerical
example, Hij ( ) and H.j (I) are used. Then, the trial function for each

iJI



element becomes
2 2 2

e (H ( )yj + HID(i) y,. + H2 j(7) y, 1,

or
2 3 3

e = (H() y + HI() y, + H2 () y, + H 3 7t-1 (12)
e j~l j ,j 2j ,j 3 ~J

respectively.

As shown in Table 2, the numerical results are quite accurate and,
for the same number of unknown.-, increasing the number of mesh points
improves the solution. It is also noted that improvement can be
achieved by refining elements.

When there is a concentrated load, the structure can be divided into
finite elements such that the location of the concentrated load becomes
a node point. The discontinuity of a variable such as y'" should be
taken into account in the formulation. This technique is also used in
the analysis of beams with off-set oupports.

Torsion of Prismatic Bar.- As an application of the minimax method
to partial differential equations consider the elastic torsion of a
prismatic bar. The governing differential equation (25) is

+G8 in the domain (13)Z 2
Ox ay

0 on the boundary (14)

in which 0 is Prandtl's stress function, G is the shear modulus,and
6 is the angle of twist per unit length of the bar.

Since the highest order derivative appearing in the governing
differential equation is two, the requirement of interelement continuity
is the continuity of 0, 0'X' 'v' and , xv Therefore, the following trial
function can be used for tne rectangular element shown in Fig. 2.

2 2 1
e (i,) = E 7 1()[H H01(n) 4ij + 4 (,) H1)

i=l j=l

+1H(f(& HI 1 1 (n)
0()l) 1ij li j 'ij

The residual in each element is

1 a2 e 1 32$e
Re 2 T + -2 + 2Ge(15)
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As a numerical example, a prismatic bar of a square cross section
will be treated by the minimax method. Let H be the height and W the
width of the cross section. The analytic solution for the torsion of a
rectangular bar as taken from Ref. 25 is

= KGeW
max

Mt = K1 GeW3 H

in which T is shear stress, Mt is the torque, and K and K1 are numerical

factors depending on the ratio H/ q.

Due to the symmetry, only one quadrant of the cross section needs
to be considered. Fesults are shown in Table 3. For the same number of
mesh points, the selection of mesh points at the Gaussian points gives
better results than the use of mesh points at a/4 and 3a/4. It is also

noted that the solution for K with 3x3 Gaussian points is better than
with 2x2 Gaussian points. However, 2x2 Gaussian points plus a center
mesh point gives poorer results than simple 2x2 Gaussian mesh points.
This indicates that convergence with respect to increasing mesh points
is not monotonic. The results also indicate that increasing the number
of elements improves the results even with a modicore choice of mesh
points.

Plane Stress Analysis.- ror a plane (x,y) elasticity problem the
equilibrium equation is

3 Jxx Oxv-- +--- =0
3x 3y

(16)

oy 'x

if body forces and thermal effects are neglected. In terms of displacement
components u and v , this becomes

1 1+ ) 1-- u, + v, + -u = 0Iv xx 2 (l-v) 'xy 2 'yy

(17)

1 + 1- 1

1-v V'yy 2(1-v) uPxy + V'xx

The solution to Eqs (17) subject to appropriate boundary conditions consti-
tutes the solution of the problem of elasticity. Since the highest order

of derivatives appearing in the governing differential equations is two in

Eq. (18), u, u, u, and u,xy should be continuous between elements. The



same applies to the displacement component v. Thus, a conforming element
using the Hermitian shape functions H1 . as basis functions is used.i3

u= [H ) H (Ul) u + H (
e j= 9= 0i O iJ li 0j :.ij

1 1 1 1+ H .(.[) Hlj('q) u,, i + H1 i() H j(12) u, qj
Oj i i

2 2

e i=lj=l i ( vii i ) ,3
1 1

+Hi(,) H (11) v, H+ Hli 1 (fl)Oi li nilj (n) v, 'ij ]

in which E ,e are trial functions for u and V, respectively, in an

element.

As an example of a plane stress problem, consider a plate subject
to simple in-plane forces such as pure tension, pure bending, and pure

shear. For the pure tension problem shown in Fig. 3, the approximate
boundary conditions are

,u = u 2 = u 3 = u, = U, = U, U U
3 l y2 y3 4 Y7

Sv1  v4 = '7 = Vxl = V,x2 = V"x3 = x4 = Vx7 = 0

Jxx7 = Cxx8 = xx9 10

°yy3 = 0yy6 = x,16 =  xy8 =  xy9 0

in which uI is the value of u at node i, u, is the value of -- at
1 ' yl

node 1, axx 7 is the value of a at node 7, etc.xx7 xx

The results obtained with the minimax method for the simple in-plane forces

are exact and this formulation passes the so-called patch test. According

to this test, in order for a solution to converge to the correct one by

refining elements, a patch of elements subjected to a specific nodal dis-

placement corresponding to a state of constant strain should produce the

constant strain state throughout the elements (6).

Limit Analysis of a Fixed-fixed Beam.- Suppose the limit load is sought

for a prismatic fixed-fixed beam subject to a uniform load as shown in

Fig. 4. Due to the symmetry, only half of the beam needs to be considered.
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Let
= H3  +H y i + H Y + H~i(c) Y, (19)

For a beam problem, the yield condition is expressed as

M n < M (20)n- p

in which Mn is the moment at x = x and M is the plastic yield moment

of the beam which is obtained when the wh9le section of the beam becomes
plastic (2), as shown in case C in Fig. 5. If the yield condition is
checked at r = 0, 1

M -l 1, 2 (21)

Choose the uniformly distributed load q = 1. Then, the residual is

R(A) =-- . - (22)
) d El

The linear programming problem becomes: Find y,' Y,, Y i, Y', i such

that Z = r is minimized, 1 is maxmimized, and the constraints

R(.) - r < 0

r < 0

(23)
, 1 < M

EI

I- -" Y, <

=9 - p

are satisfied. Using j 0.2, 0.4, 0.6, 0.8, and 1, the following results
were obtained

M1 = -12 lb-in (1356.36 N-mm), V1  7.2 lb (32.04 N), Y2  0.004 in (0,1016 mm)

M, = 6 lb-in (678.18 N-mm), X = 1.44 lb (6.408 N)

Here, M.i and V. are the moments and shear force at node i. N = 1.44 is the
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lower bound on the limit load factor and causes the plastic moment at

-=0.

If the material is elastic perfectly plastic, M remains the same

as 11 . Upon a further increase in load, the elastic part of the beam
will support the increase in load. Therefore, by solving the following

linear programming problem, the next largest load which causes further

yielding can be determined: Find vi, y and such that
Z r is minimized, \., is maximized, and he constraints

- r < 0
3

- r < 0

(24)
E o

EI
=r M

p

are satisfied. The numerical results for this problem were found to be

M1 = -12 lb-in (-1356.36 N-mm) V1 = 9.6 lb (42.72 N), y, = 0.11 in. (2.794 rnm)

m, = 12 lb-in (1356.36 N-mm) 2 = 1.92 lb (8.544 N)

As indicated in Fig. 4(d), the collapse mechanism has been formed and

\ 1.92 is the exact load factor for the collapse load.

CONCLUSION

It is shown that the minimax weighted residual method can be used for
obtaining finite element solutions. The method appears to be relatively

easy to set up and gives satisfactory results for the example problems.
This method is very attractive, particularly for ordinary differential

equations and low order partial differential equations. It can be used to

solve problems with inequality constraints.

Unlike the collocation method, the solution can be improved by using

more mesh points than the number of unknown coefficients in the given trial

function. Also, the solution can be improved by refining elements. The

Gaussian points are optimal mesh points for the proposed minimax method.
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APPENDIX I - PARAMETRIC PROGRA:MING METHCD TO CHOOSE A PARTICU'LAR SOLUTON

FROM MULTIPLE SOLUTIONS

Consider the problem, find x such that Z= 'c T{x} are minimized
and the constraints

[A]{x} = {b}

x} > 0

are satisfied. Let some perturbation Le given to c

Ic+} = {c}-

T
in which E is small positive number. Now, assume that ql is one of the
multiple solutions {XB}. Then, Z' becomes (14)

T T T
= ({c } _ f ) fxq c q £f1 f q}

B B B' B- *B B ~B
If there are Z multiple solutions

Tl r 1 2 r 2 T

{c tXB } = IC} {X _ = ='cB B,

If we can have one of xB remain optimal, minimizing Z+ eans also maximizir
C.f T IB IXBT and this is the same as

'f T
.aximize Z = f {xi

such that [A],'x} = {bli

{sc t t x} B }

Therefore, by minimizing Z {c } {x} such that [A]{x} = {b}, {x} > 0
and by properly choosing E, we can obtain a particular solution from the
multiple solutions which satisfy min Z = {c}-'{x} and max Z* = E{f}T{x} such

that [A]{x} = {b}, fx}6{XBJ, E can be chosen as follows:

We wish to maintain one of the {x B } as the optimal basic solution for the
new problem

A-!



+ +T
minimize Z = {c+.T{xf

such that [A]fxl = {b}

> 0

+ + T
2enote by z, - c. the value at z. - c. when {c} is replaced by ic+ T

then the critical value of £ is such that any increase in e would make one
+ +

or more z. - c. positive
J J

+ + _ IT fz. - c. = (cI 1  £{fB j{. - c,. - ef.3 = z. - c. - (tfB}T{yi; - f.),
z ( B B 1){ C jf C CJ B I~

in which fB is the row vector that contains the components of f corresponding
BT

to the components of c in cB. If {f I T{y - f. are nonnegative, then we
B j j

can make e arbitrarily large without destroying optimality. However, if

one or more {f }T{y j - f. are negative and E is large enough, the corresponding
+-+ B j+ +

z. - c. will become positive. Thus, the critical value of E > 0 is given by

z. - c.

PI= min T if ffBTy}< 0ff yj)
o for one or more j

or

TT

C , if {fB}T{v.}-f. > 0 , for all j
Ec B j 1 -

Therefore, by choosing £ < Ec' minimizing Z+  c c {xI also minimizes

T rfT tZ = {c}T{x} and, at the same time, maximizes z* = £{f}T x}.

A-2
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APPENDIX III. - NOTATION

The following symbols are used in this paper:

A = differential operator;

[ A] = constraint matrix;

a, = unknown coefficients;

{ai} = columns of [A] matrix;

B = boundary differential expression;

[a] = basis matrix;

c}T  = row price vector;

T{ c8  = row vector of the prices of basis variables;

E = Young's modulus of elasticity;

f = prescribed function;

{f}T = some specific, but arbitrary row vector;

G = shear modulus;

n
H.. = nth order Hermitian shape function;ii

I = moment of inertia of cross section;

k = stiffness of elastic foundation;
s

L = length of a beam;

= length of a beam element;

Mi  = moment at node i;

MP = plastic moment of a beam;

Mt  - torque;

q M uniform load intensity;

A--5S



R = residual;

r = maximum of the absolute value of residual;

u = exact solution;

u = approximate solution (trial function);

V = shear at node i;i

X = vector of snace variables;

Y = yield function;

y. = value of y at node j;

{y.} = [B- 1{a. };

yovalue of,. at node j;

z = objective function;

secondarz objective function;

z. {cT {) };
j B -

basis of a trial function;

= Prandtl's stress function;

= value of at node (i,j) (Refer to Fici. 3);
ije

ij = value of at node (i,j);

= load factor;

V = Poisson's ratio; and

= angle of twist per unit length.
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TABLE 3 Results for the Torsion of a Prismatic Bar with
Square Cross Section

Location of -Nd -Of NO. -Of K I'Rmak
mesh points un- mesh Remarks

knowns po int s

(1 2) (3) (4) (5) (6)

(a) With one element for a quadrant

4 4 0.651 0.1389

+ +

4 0.670 0.1432 2x2 Gaussian

+ + points

+ 4 5 0.636 0.1356

.. +

+ + 2x2 Gaussian
+ 5 0.648 0.1383 points plus

+ + center

+ + 4 9 0.674 0.1454 3x3 Gaussian

+ + + points



TABLE 3 Continued

(b) With 4 elements for a quadrant

74 17/4

a2/4 4- 44

/ , 
-%

'/4 4 16 16 0.672 0.1389

+

4 (Z a4

+++4 16 20 0.669 0.1391

16 16 0.675 0.1408 2x2 Gaussian
points

(c) Exact (32)

0.675 0.1406

.Note: a 5 in (127 mm)

+ represents a mesh point



q 1,000,000 lb/ft

i ~{ I ri I IEI 20,833,300 lb-ft

Sk s 2,073600 lb/ft 2  
=I ZXEX/z

yAq Y,rI '£ /

I I

(a) Beam with two elements (b) Beam element

2 2
(1 ft. 0.305 m; 1 lb/ft = 14.59 N/m; 1 lb/ft = 47.837 N/m; 1 lb-ft = 0.414 N-m 2)

Fig. 1 Beam on Elastic Foundation



Sy,I,

- x/a

I (1,2) (2,2) r = y/b

i__ (1,1) (2,1)

a X

Fig. 2 Rectangular Element

Im--

Line of _

L1 0 lb/in

l0 in 10 in

3 6 9 10 ib

2 510 lb

12 510 lb

5 in 5 in

(I in 25.4 mm; 1 lb 4.45 N; 1 lb/in = 0.175 N/umm)

Fig. 3 Pure Tension



LI 1 lb-in2

L

(a) Original structure

(b) Structure for the first analysis

M1 = 12 lb-in
L/2

()Structure for the secon-d analysis

(d) Collapse mechanism

(l in =25.4 mni; I lb-in 2= 2870.692 N-nmmi; 1 lb-in =113.03 N-%rn)

Fig. - Limit Analysis of a Fixed-fixed Beam
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(A) (B) (C)

(a) Stress-strain relationship for extreme fiber

ay a

(A) (B) (C)

(b) Stress distribution

Fig. 5 Plastic Bending
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